Synthesis of 2-(imidazolylamino)benzothiazoles

O. S. El'tsov* and V. S. Mokrushin

Ural State Technical University, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation. Fax: +7 (343 2) 74 5483. E-mail: eltsov@htf.ustu.ru

Treatment of derivatives of 5-phenylthioureido-3*H*-imidazole-4-carboxylic acid with bromine afforded 2-(imidazolylamino)benzothiazoles.

Key words: 2-aminobenzothiazole, oxidative cyclization, imidazolylphenylthiourea, imidazolylaminobenzothiazole.

Certain of 2-aminobenzothiazole derivatives have an action on the central nervous system, ^{1,2} possess antimicrobial and antibacterial properties, ^{3,4} serve as neuroleptic agents, ^{5–7} or act as plant growth regulators. ^{8,9} In this connection, the synthesis of new 2-aminobenzothiazole derivatives is of interest.

One of convenient procedures for the construction of the benzothiazole system involves oxidative cyclization of phenylthioureas with bromine (Hugerschoff's synthesis). 10 In the present study, we applied this procedure to the synthesis of new heteroaromatic derivatives of 2-aminobenzothiazole containing the imidazole ring bound to the amino group. 5-Imidazolylphenylthioureas 1a-g were used as the starting compounds. The reactions of bromine with polyfunctional imidazolylthioureido derivatives 1a-g can follow several pathways. Thus the imidazole and aromatic rings can undergo bromination, 11 fused imidazothiadiazoles can be produced, 12 or cyclization can occur to generate imidazole derivatives of 2-aminobenzothiazole. The latter process is analogous to the transformations of arylthioureas under the action of bromine. 13,14 Such oxidative transformations of N-(imidazol-5-yl)-N'phenylthioureas have previously been unknown.

However, it appeared that the reactions of thioureas ${\bf 1a-f}$ (${\bf R}^1={\bf OEt}, {\bf NH_2}, {\bf or NHMe})$ with bromine afforded imidazolylaminobenzothiazoles ${\bf 2a-f}$ as the only products in 50–77% yields (Scheme 1). The structures of the resulting compounds were confirmed by the $^1{\bf H}$ NMR spectroscopic data. Thus the signal for the proton of the NH group of the thioureido fragment is absent and the resonance signals for only four aromatic protons are observed at δ 7.8–7.1. In addition, the character of splitting of these signals is typical of o-substituted aromatic systems (Table 1). Under analogous conditions, bromination of compound ${\bf 1g}$ (${\bf R}^1={\bf NHC_6H_4}$ -Me-p) proceeded ambiguously to give a mixture of several products with similar chromatographic mobilities. We failed to isolate

Scheme 1

 $\begin{array}{l} R^1 = \text{OEt}, \ R^2 = H \ (\textbf{a}); \ Et \ (\textbf{b}); \ Pr \ (\textbf{c}); \ CH_2 COMe \ (\textbf{d}); \\ R^1 = NH_2, \ R^2 = H \ (\textbf{e}); \ R^1 = NHMe, \ R^2 = H \ (\textbf{f}); \\ R^1 = NHC_6 H_4 - Me - \rho, \ R^2 = H \ (\textbf{g}) \end{array}$

individual products from this mixture. Imidazolylaminobenzothiazole **2g** containing the arylamide functional group was prepared by the reaction performed in acetic acid at 70 °C. The molecular ions in the mass spectra of the resulting compounds correspond to the calculated m/z values (Table 2). Note that the type of fragmentation of the molecular ions is identical in all the mass spectra. Thus four most intense fragmentation ions are observed in all mass spectra at m/z 242 (Φ_1), 161 (Φ_2), 134 (Φ_3), and 108 (Φ_4) (Scheme 2).

Experimental

The ¹H NMR spectra were recorded on a Bruker WM-250 instrument (250.13 MHz) in a solution in DMSO-d₆ with SiMe₄ as the internal standard. The course of the reactions and the purities of the compounds were monitored by TLC on Sorbfil UV-254 plates using the 1:10 ethanol—chloroform system. The mass spectra were measured on a Varian MAT 311A instrument; the accelerating voltage was 3 kV; the energy of ionizing electrons was 70 eV. The melting points were not corrected. Compounds 1a—g were prepared according to procedures described previously.^{12,15}

Table 1. ¹H NMR spectra of the compounds synthesized

Com- pound	δ (<i>J</i> /Hz)
2a	12.94, 9.11 (both br.s, 1 H each, 2 NH); 7.76 (d, 1 H, Ar, $J = 7.9$); 7.68 (s, 1 H, CH, Im); 7.55 (d, 1 H, Ar, $J = 7.9$); 7.33—7.11 (m, 2 H, Ar); 4.38 (q, 2 H, OCH ₂ CH ₃ , $J = 6.7$); 1.40 (t, 3 H, OCH ₂ CH ₃ , $J = 6.7$)
2b	8.04 (s, 1 H, CH, Im); 7.85 (d, 1 H, Ar, <i>J</i> = 7.9); 7.63 (d, 1 H, Ar, <i>J</i> = 8.2); 7.41—7.20 (m, 2 H, Ar); 5.00 (br.s, 1 H, NH); 4.46 (m, 4 H, O <u>CH</u> ₂ CH ₃ , N <u>CH</u> ₂ CH ₃); 1.38 (m, 6 H, OCH ₂ <u>CH</u> ₃ , NCH ₂ <u>CH</u> ₃)
2c	9.37 (br.s, 1 H, NH); 7.82 (s, 1 H, CH, Im); 7.76 (d, 1 H, Ar, <i>J</i> = 7.9); 7.56 (d, 1 H, Ar, <i>J</i> = 7.9); 7.34—7.11 (m, 2 H, Ar); 4.40 (q, 2 H, OCH ₂ CH ₃ , <i>J</i> = 7.3); 4.21 (t, 2 H, NCH ₂ CH ₂ CH ₃); 1.79 (m, 2 H, NCH ₂ CH ₂ CH ₃); 1.42 (t, 3 H, OCH ₂ CH ₃ , <i>J</i> = 7.3); 0.91 (t, 3 H, NCH ₂ CH ₂ CH ₃ , <i>J</i> = 7.3)
2d	9.45 (br.s, 1 H, NH); 7.79 (s, 1 H, CH, Im); 7.76 (d, 1 H, Ar, $J = 7.9$); 7.56 (d, 1 H, Ar, $J = 7.9$); 7.34—7.12 (m, 2 H, Ar); 5.16 (s, 2 H, NCH ₂ COCH ₃); 4.33 (q, 2 H, OCH ₂ CH ₃ , $J = 7.3$); 2.20 (s, 3 H, NCH ₂ COCH ₃); 1.36 (t, 3 H, OCH ₂ CH ₃ , $J = 7.3$)
2e	12.39 (br.s, 1 H, NH, Im); 11.60, 10.21 (both br.s, 1 H each, CONH ₂); 7.55—7.43 (m, 2 H, Ar, CH, Im); 7.24—7.06 (m, 4 H, Ar, NH)
2f	12.40 (br.s, 1 H, NH, Im); 8.33 (s, 1 H, CH, Im); 8.06 (br.s, 1 H, $\underline{\text{NHCH}}_3$); 7.76 (d, 1 H, Ar, $J = 7.9$); 7.52 (d, 1 H, Ar, $J = 7.9$); 7.40—7.17 (m, 2 H, Ar); 6.50 (br.s, 1 H, NH); 2.88 (d, 3 H, NH $\underline{\text{CH}}_3$, $J = 4.8$)
2g	10.10, 8.32 (both br.s, 1 H each, 2 NH); 7.91 (s, 1 H, CH, Im); 7.78 (d, 1 H, Ar, <i>J</i> = 6.7); 7.69—7.11 (AA´BB´, 4 H, Ar, <i>J</i> = 7.6); 7.56 (d, 1 H, Ar, <i>J</i> = 6.7); 7.38, 7.21 (both m, 1 H each, Ar);

The yields, the melting points, and the data from elemental analysis of compounds 2a-g are given in Table 3. The spectroscopic characteristics of these compounds are listed in Tables 1 and 2.

Ethyl 5-(benzothiazol-2-ylamino)-3*H*-imidazole-4-carboxylate (2a), ethyl 5-(benzothiazol-2-ylamino)-3-ethyl-3*H*-imid-

Table 2. Mass spectra of the compounds synthesized

2.31 (s, 3 H, CH₃)

Com-	$m/z (I_{\rm rel} (\%))$								
pound	M • +	Ф1	Ф2	Ф3	Φ4				
2a	288 (35.42)	242	161	134	108				
		(100)	(14.54)	(32.22)	(8.51)				
2b	316 (100)	(32.30)	(21.29)	(15.95)	(9.51)				
2c	330 (100)	(72.32)	(19.32)	(16.75)	(7.58)				
2d	344 (100)	(28.49)	(16.99)	(11.63)	(8.28)				
2e	259 (53.07)	(100)	(17.08)	(50.72)	(14.55)				
2f	273 (72.67)	(100)	(19.80)	(43.66)	(12.54)				
2g	349 (32.93)	(39.48)	(18.67)	(15.84)	(100)				

Scheme 2

$$\Phi_1$$
 (m/z 242)

 Φ_1 (m/z 242)

 Φ_2 (m/z 161)

 Φ_3 (m/z 134)

azole-4-carboxylate (2b), ethyl 5-(benzothiazol-2-ylamino)-3-propyl-3H-imidazole-4-carboxylate (2c), and ethyl 5-(benzothiazol-2-ylamino)-3-(2-oxopropyl)-3H-imidazole-4-carboxylate (2d) (general procedure). A solution of Br $_2$ (0.72 mmol) in chloroform (2 mL) was added dropwise to a solution of 5-imidazolylphenylthiourea 1a-d (0.72 mmol) in chloroform (10-20 mL). The reaction mixture was stirred at ~20 °C for 0.5 h and then filtered with charcoal. The solvent was evaporated and the residue was recrystallized from ethanol, filtered off, and dried.

Table 3. Yields, melting points, and data from elemental analysis of the compounds synthesized

Com- Yield M.p. pound (%) /°C		Found (%) Calculated			Molecular formula		
			С	Н	N	S	
2a	50	183—184			19.55 19.43		$C_{13}H_{12}N_4O_2S$
2 b	62	217—218			17.90 17.71		$C_{15}H_{16}N_4O_2S$
2c	72	132—133			17.13 16.96		$C_{16}H_{18}N_4O_2S$
2d	74	212—213			$\frac{16.10}{16.27}$		$C_{16}H_{16}N_4O_3S$
2e	77	268—269			27.19 27.01		$C_{11}H_9N_5OS$
2f	62	233—234	$\frac{52.91}{52.73}$		25.80 25.62		$C_{12}H_{11}N_5OS$
2g	55	186—187	$\frac{61.71}{61.87}$		20.19 20.05		$C_{18}H_{15}N_5OS$

5-(Benzothiazol-2-ylamino)-3H-imidazole-4-carboxamide (2e). 5-Imidazolylphenylthiourea 1e (0.72 mmol) was suspended in chloroform (50 mL), a solution of Br $_2$ (0.72 mmol) in chloroform (2 mL) was added dropwise, and the reaction mixture was stirred at ~20 °C for 1.5 h. The precipitate that formed was filtered off, washed with ethanol, reprecipitated with water from DMF, filtered off, and dried.

Methylamide of 5-(benzothiazol-2-ylamino)-3H-imidazole-4-carboxylic acid (2f). 5-Imidazolylphenylthiourea 1f (0.72 mmol) was suspended in chloroform (50 mL), a solution of Br₂ (0.72 mmol) in chloroform (2 mL) was added, and the reaction mixture was stirred at ~20 °C for 2 h. The resulting solution was filtered with charcoal. Then the solvent was evaporated and the residue was crystallized from aqueous ethanol.

p-Tolylamide of 5-(benzothiazol-2-ylamino)-3H-imidazole-4-carboxylic acid (2g). 5-Imidazolylphenylthiourea 1g (0.72 mmol) was dissolved in AcOH (50 mL) at 70 °C. Then Br₂ (0.72 mmol) was added dropwise. The reaction mixture was stirred at this temperature for 2 h, filtered with charcoal, and cooled. The precipitate that formed was filtered off and crystallized from ethanol.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 01-03-32609) and by the US Civilian Research and Development Foundation (Grant REC 005).

References

- 1. Pat. WO 98 14,444; Chem. Abstrs., 1998, 128, P270603w.
- 2. Pat. WO 96 13,492; Chem. Abstrs., 1996, 125, P114600a.

- 3. B. M. Gurupadawa, E. Jayachandran, B. S. Kumar, A. N. Nagappa, and L. V. G. Nargund, *Indian J. Heterocycl. Chem.*, 1998, 7, 213.
- A. S. Ratood, S. D. Patil, B. N. Berad, and A. G. Doshi, *Oriental J. Chem.*, 1998, 14, 107.
- A. G. Kauthasamy, D. D. Truong, R. G. Yun, and B. Nguen, J. Pharmacol. Exp. Ther., 1999, 288, 1340.
- Sepulveda, J. G. Astorga, and E. Contreras, *Europ. J. Pharm.*, 1999, 379, 59.
- A. Siniscachi, C. Zona, G. Sancesario, Zeng Yong Chun,
 N. B. Mercury, and G. Bernardi, *Synapse (N. Y.)*, 1999,
 32, 147.
- 8. T. Kitagawa and Ch. Tsutsui, *Chem. Farm. Bull.*, 2000, **48**, 1369.
- 9. Pat. Pol. PL 165,691; Chem. Abstrs., 1996, 125, P27861b.
- Heterocyclic Compounds, Ed. R. C. Elderfield, J. Wiley and Sons, New York—London, 1960, 5, 586 p.
- 11. K. Hoffman, in *Chemistry of Classes and Derivatives*, New York, 1953, p. 111.
- 12. Y. Wang, P. R. Lowe, W. T. Thomson, J. Clark, and M. F. G. Stevens, *Chem. Commun.*, 1997, 363.
- 13. M. B. Ambati, V. Anand, and P. Hanumanthu, *Synth. Commun.*, 1997, **27**, 1487.
- Eur. Pat. Appl. EP 289,971; Chem. Abstrs., 1989, 110, 108194v.
- O. S. Eltsov, V. S. Mokrushin, T. V. Rybalova, Y. V. Gatilov, and A. V. Tkachev, *Mendeleev Commun.*, 2000, 233.

Received July 20, 2001; in revised form December 5, 2001